Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Disjoints vs. converse functions
eldisjss
Next ⟩
eldisjssi
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldisjss
Description:
Subclass theorem for disjoint elementhood.
(Contributed by
Peter Mazsa
, 23-Sep-2021)
Ref
Expression
Assertion
eldisjss
⊢
A
⊆
B
→
ElDisj
B
→
ElDisj
A
Proof
Step
Hyp
Ref
Expression
1
ssres2
⊢
A
⊆
B
→
E
-1
↾
A
⊆
E
-1
↾
B
2
1
disjssd
⊢
A
⊆
B
→
Disj
E
-1
↾
B
→
Disj
E
-1
↾
A
3
df-eldisj
⊢
ElDisj
B
↔
Disj
E
-1
↾
B
4
df-eldisj
⊢
ElDisj
A
↔
Disj
E
-1
↾
A
5
2
3
4
3imtr4g
⊢
A
⊆
B
→
ElDisj
B
→
ElDisj
A