| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleigvec |
|- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
| 2 |
|
elspansn |
|- ( A e. ~H -> ( ( T ` A ) e. ( span ` { A } ) <-> E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 3 |
2
|
adantr |
|- ( ( A e. ~H /\ A =/= 0h ) -> ( ( T ` A ) e. ( span ` { A } ) <-> E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 4 |
3
|
pm5.32i |
|- ( ( ( A e. ~H /\ A =/= 0h ) /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 5 |
|
df-3an |
|- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ ( T ` A ) e. ( span ` { A } ) ) ) |
| 6 |
|
df-3an |
|- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 7 |
4 5 6
|
3bitr4i |
|- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 8 |
1 7
|
bitr4di |
|- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) |