| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1d.1 |  |-  ( ph -> A = B ) | 
						
							| 2 |  | dfcleq |  |-  ( A = B <-> A. x ( x e. A <-> x e. B ) ) | 
						
							| 3 | 1 2 | sylib |  |-  ( ph -> A. x ( x e. A <-> x e. B ) ) | 
						
							| 4 | 3 | 19.21bi |  |-  ( ph -> ( x e. A <-> x e. B ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( ph -> ( ( x = C /\ x e. A ) <-> ( x = C /\ x e. B ) ) ) | 
						
							| 6 | 5 | exbidv |  |-  ( ph -> ( E. x ( x = C /\ x e. A ) <-> E. x ( x = C /\ x e. B ) ) ) | 
						
							| 7 |  | dfclel |  |-  ( C e. A <-> E. x ( x = C /\ x e. A ) ) | 
						
							| 8 |  | dfclel |  |-  ( C e. B <-> E. x ( x = C /\ x e. B ) ) | 
						
							| 9 | 6 7 8 | 3bitr4g |  |-  ( ph -> ( C e. A <-> C e. B ) ) |