Step |
Hyp |
Ref |
Expression |
1 |
|
cossex |
|- ( F e. V -> ,~ F e. _V ) |
2 |
|
elcnvrefrelsrel |
|- ( ,~ F e. _V -> ( ,~ F e. CnvRefRels <-> CnvRefRel ,~ F ) ) |
3 |
1 2
|
syl |
|- ( F e. V -> ( ,~ F e. CnvRefRels <-> CnvRefRel ,~ F ) ) |
4 |
|
elrelsrel |
|- ( F e. V -> ( F e. Rels <-> Rel F ) ) |
5 |
3 4
|
anbi12d |
|- ( F e. V -> ( ( ,~ F e. CnvRefRels /\ F e. Rels ) <-> ( CnvRefRel ,~ F /\ Rel F ) ) ) |
6 |
|
elfunsALTV |
|- ( F e. FunsALTV <-> ( ,~ F e. CnvRefRels /\ F e. Rels ) ) |
7 |
|
df-funALTV |
|- ( FunALTV F <-> ( CnvRefRel ,~ F /\ Rel F ) ) |
8 |
5 6 7
|
3bitr4g |
|- ( F e. V -> ( F e. FunsALTV <-> FunALTV F ) ) |