Metamath Proof Explorer


Theorem elcnvrefrelsrel

Description: For sets, being an element of the class of converse reflexive relations ( df-cnvrefrels ) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elcnvrefrelsrel
|- ( R e. V -> ( R e. CnvRefRels <-> CnvRefRel R ) )

Proof

Step Hyp Ref Expression
1 elrelsrel
 |-  ( R e. V -> ( R e. Rels <-> Rel R ) )
2 1 anbi2d
 |-  ( R e. V -> ( ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ R e. Rels ) <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) )
3 elcnvrefrels2
 |-  ( R e. CnvRefRels <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ R e. Rels ) )
4 dfcnvrefrel2
 |-  ( CnvRefRel R <-> ( R C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) )
5 2 3 4 3bitr4g
 |-  ( R e. V -> ( R e. CnvRefRels <-> CnvRefRel R ) )