Description: Define the class of converse reflexive relations. This is practically dfcnvrefrels2 (which uses the traditional subclass relation C_ ) : we use converse subset relation ( brcnvssr ) here to ensure the comparability to the definitions of the classes of all reflexive ( df-ref ), symmetric ( df-syms ) and transitive ( df-trs ) sets.
We use this concept to define functions ( df-funsALTV , df-funALTV ) and disjoints ( df-disjs , df-disjALTV ).
For sets, being an element of the class of converse reflexive relations is equivalent to satisfying the converse reflexive relation predicate, see elcnvrefrelsrel . Alternate definitions are dfcnvrefrels2 and dfcnvrefrels3 . (Contributed by Peter Mazsa, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnvrefrels | |- CnvRefRels = ( CnvRefs i^i Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnvrefrels | |- CnvRefRels |
|
1 | ccnvrefs | |- CnvRefs |
|
2 | crels | |- Rels |
|
3 | 1 2 | cin | |- ( CnvRefs i^i Rels ) |
4 | 0 3 | wceq | |- CnvRefRels = ( CnvRefs i^i Rels ) |