Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnvrefrels |
|- CnvRefRels = ( CnvRefs i^i Rels ) |
2 |
|
df-cnvrefs |
|- CnvRefs = { r | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
3 |
|
dmexg |
|- ( r e. _V -> dom r e. _V ) |
4 |
3
|
elv |
|- dom r e. _V |
5 |
|
rnexg |
|- ( r e. _V -> ran r e. _V ) |
6 |
5
|
elv |
|- ran r e. _V |
7 |
4 6
|
xpex |
|- ( dom r X. ran r ) e. _V |
8 |
|
inex2g |
|- ( ( dom r X. ran r ) e. _V -> ( _I i^i ( dom r X. ran r ) ) e. _V ) |
9 |
|
brcnvssr |
|- ( ( _I i^i ( dom r X. ran r ) ) e. _V -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
10 |
7 8 9
|
mp2b |
|- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) |
11 |
|
elrels6 |
|- ( r e. _V -> ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) ) |
12 |
11
|
elv |
|- ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) |
13 |
12
|
biimpi |
|- ( r e. Rels -> ( r i^i ( dom r X. ran r ) ) = r ) |
14 |
13
|
sseq1d |
|- ( r e. Rels -> ( ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) <-> r C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
15 |
10 14
|
syl5bb |
|- ( r e. Rels -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> r C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
16 |
1 2 15
|
abeqinbi |
|- CnvRefRels = { r e. Rels | r C_ ( _I i^i ( dom r X. ran r ) ) } |