Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnvrefrels |
|- CnvRefRels = ( CnvRefs i^i Rels ) |
2 |
|
df-cnvrefs |
|- CnvRefs = { r | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
3 |
1 2
|
abeqin |
|- CnvRefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) } |
4 |
|
dmexg |
|- ( r e. _V -> dom r e. _V ) |
5 |
4
|
elv |
|- dom r e. _V |
6 |
|
rnexg |
|- ( r e. _V -> ran r e. _V ) |
7 |
6
|
elv |
|- ran r e. _V |
8 |
5 7
|
xpex |
|- ( dom r X. ran r ) e. _V |
9 |
|
inex2g |
|- ( ( dom r X. ran r ) e. _V -> ( _I i^i ( dom r X. ran r ) ) e. _V ) |
10 |
|
brcnvssr |
|- ( ( _I i^i ( dom r X. ran r ) ) e. _V -> ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) ) |
11 |
8 9 10
|
mp2b |
|- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) ) |
12 |
|
inxpssidinxp |
|- ( ( r i^i ( dom r X. ran r ) ) C_ ( _I i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) ) |
13 |
11 12
|
bitri |
|- ( ( _I i^i ( dom r X. ran r ) ) `' _S ( r i^i ( dom r X. ran r ) ) <-> A. x e. dom r A. y e. ran r ( x r y -> x = y ) ) |
14 |
3 13
|
rabbieq |
|- CnvRefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x r y -> x = y ) } |