Step |
Hyp |
Ref |
Expression |
1 |
|
df-cnvrefrels |
⊢ CnvRefRels = ( CnvRefs ∩ Rels ) |
2 |
|
df-cnvrefs |
⊢ CnvRefs = { 𝑟 ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } |
3 |
1 2
|
abeqin |
⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) } |
4 |
|
dmexg |
⊢ ( 𝑟 ∈ V → dom 𝑟 ∈ V ) |
5 |
4
|
elv |
⊢ dom 𝑟 ∈ V |
6 |
|
rnexg |
⊢ ( 𝑟 ∈ V → ran 𝑟 ∈ V ) |
7 |
6
|
elv |
⊢ ran 𝑟 ∈ V |
8 |
5 7
|
xpex |
⊢ ( dom 𝑟 × ran 𝑟 ) ∈ V |
9 |
|
inex2g |
⊢ ( ( dom 𝑟 × ran 𝑟 ) ∈ V → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V ) |
10 |
|
brcnvssr |
⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ∈ V → ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) ) |
11 |
8 9 10
|
mp2b |
⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ) |
12 |
|
inxpssidinxp |
⊢ ( ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) ) |
13 |
11 12
|
bitri |
⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ◡ S ( 𝑟 ∩ ( dom 𝑟 × ran 𝑟 ) ) ↔ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) ) |
14 |
3 13
|
rabbieq |
⊢ CnvRefRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∈ dom 𝑟 ∀ 𝑦 ∈ ran 𝑟 ( 𝑥 𝑟 𝑦 → 𝑥 = 𝑦 ) } |