Description: For sets, being an element of the class of converse reflexive relations ( df-cnvrefrels ) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elcnvrefrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) ) | |
2 | 1 | anbi2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) ) |
3 | elcnvrefrels2 | ⊢ ( 𝑅 ∈ CnvRefRels ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ) | |
4 | dfcnvrefrel2 | ⊢ ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅 ) ) |