Metamath Proof Explorer


Theorem elcnvrefrelsrel

Description: For sets, being an element of the class of converse reflexive relations ( df-cnvrefrels ) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion elcnvrefrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 elrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) )
2 1 anbi2d ( 𝑅𝑉 → ( ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) )
3 elcnvrefrels2 ( 𝑅 ∈ CnvRefRels ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ 𝑅 ∈ Rels ) )
4 dfcnvrefrel2 ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )
5 2 3 4 3bitr4g ( 𝑅𝑉 → ( 𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅 ) )