Metamath Proof Explorer


Theorem elimh

Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)

Ref Expression
Hypotheses elimh.1
|- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> ch ) )
elimh.2
|- ( ( if- ( ch , ph , ps ) <-> ps ) -> ( ta <-> th ) )
elimh.3
|- th
Assertion elimh
|- ta

Proof

Step Hyp Ref Expression
1 elimh.1
 |-  ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> ch ) )
2 elimh.2
 |-  ( ( if- ( ch , ph , ps ) <-> ps ) -> ( ta <-> th ) )
3 elimh.3
 |-  th
4 ifptru
 |-  ( ch -> ( if- ( ch , ph , ps ) <-> ph ) )
5 4 1 syl
 |-  ( ch -> ( ta <-> ch ) )
6 5 ibir
 |-  ( ch -> ta )
7 ifpfal
 |-  ( -. ch -> ( if- ( ch , ph , ps ) <-> ps ) )
8 7 2 syl
 |-  ( -. ch -> ( ta <-> th ) )
9 3 8 mpbiri
 |-  ( -. ch -> ta )
10 6 9 pm2.61i
 |-  ta