Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimh.1 | |- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> ch ) ) |
|
| elimh.2 | |- ( ( if- ( ch , ph , ps ) <-> ps ) -> ( ta <-> th ) ) |
||
| elimh.3 | |- th |
||
| Assertion | elimh | |- ta |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimh.1 | |- ( ( if- ( ch , ph , ps ) <-> ph ) -> ( ta <-> ch ) ) |
|
| 2 | elimh.2 | |- ( ( if- ( ch , ph , ps ) <-> ps ) -> ( ta <-> th ) ) |
|
| 3 | elimh.3 | |- th |
|
| 4 | ifptru | |- ( ch -> ( if- ( ch , ph , ps ) <-> ph ) ) |
|
| 5 | 4 1 | syl | |- ( ch -> ( ta <-> ch ) ) |
| 6 | 5 | ibir | |- ( ch -> ta ) |
| 7 | ifpfal | |- ( -. ch -> ( if- ( ch , ph , ps ) <-> ps ) ) |
|
| 8 | 7 2 | syl | |- ( -. ch -> ( ta <-> th ) ) |
| 9 | 3 8 | mpbiri | |- ( -. ch -> ta ) |
| 10 | 6 9 | pm2.61i | |- ta |