Metamath Proof Explorer


Theorem elimh

Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)

Ref Expression
Hypotheses elimh.1 ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) → ( 𝜏𝜒 ) )
elimh.2 ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) → ( 𝜏𝜃 ) )
elimh.3 𝜃
Assertion elimh 𝜏

Proof

Step Hyp Ref Expression
1 elimh.1 ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) → ( 𝜏𝜒 ) )
2 elimh.2 ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) → ( 𝜏𝜃 ) )
3 elimh.3 𝜃
4 ifptru ( 𝜒 → ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) )
5 4 1 syl ( 𝜒 → ( 𝜏𝜒 ) )
6 5 ibir ( 𝜒𝜏 )
7 ifpfal ( ¬ 𝜒 → ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) )
8 7 2 syl ( ¬ 𝜒 → ( 𝜏𝜃 ) )
9 3 8 mpbiri ( ¬ 𝜒𝜏 )
10 6 9 pm2.61i 𝜏