Description: Hypothesis builder for the weak deduction theorem. For more information, see the Weak Deduction Theorem page mmdeduction.html . (Contributed by NM, 26-Jun-2002) Revised to use the conditional operator. (Revised by BJ, 30-Sep-2019) Commute consequent. (Revised by Steven Nguyen, 27-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elimh.1 | ⊢ ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) → ( 𝜏 ↔ 𝜒 ) ) | |
elimh.2 | ⊢ ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) → ( 𝜏 ↔ 𝜃 ) ) | ||
elimh.3 | ⊢ 𝜃 | ||
Assertion | elimh | ⊢ 𝜏 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimh.1 | ⊢ ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) → ( 𝜏 ↔ 𝜒 ) ) | |
2 | elimh.2 | ⊢ ( ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) → ( 𝜏 ↔ 𝜃 ) ) | |
3 | elimh.3 | ⊢ 𝜃 | |
4 | ifptru | ⊢ ( 𝜒 → ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜑 ) ) | |
5 | 4 1 | syl | ⊢ ( 𝜒 → ( 𝜏 ↔ 𝜒 ) ) |
6 | 5 | ibir | ⊢ ( 𝜒 → 𝜏 ) |
7 | ifpfal | ⊢ ( ¬ 𝜒 → ( if- ( 𝜒 , 𝜑 , 𝜓 ) ↔ 𝜓 ) ) | |
8 | 7 2 | syl | ⊢ ( ¬ 𝜒 → ( 𝜏 ↔ 𝜃 ) ) |
9 | 3 8 | mpbiri | ⊢ ( ¬ 𝜒 → 𝜏 ) |
10 | 6 9 | pm2.61i | ⊢ 𝜏 |