Metamath Proof Explorer


Theorem elimph

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses elimph.1
|- X = ( BaseSet ` U )
elimph.5
|- Z = ( 0vec ` U )
elimph.6
|- U e. CPreHilOLD
Assertion elimph
|- if ( A e. X , A , Z ) e. X

Proof

Step Hyp Ref Expression
1 elimph.1
 |-  X = ( BaseSet ` U )
2 elimph.5
 |-  Z = ( 0vec ` U )
3 elimph.6
 |-  U e. CPreHilOLD
4 3 phnvi
 |-  U e. NrmCVec
5 1 2 4 elimnv
 |-  if ( A e. X , A , Z ) e. X