Metamath Proof Explorer


Theorem elimphu

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007) (New usage is discouraged.)

Ref Expression
Assertion elimphu
|- if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD

Proof

Step Hyp Ref Expression
1 eqid
 |-  <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >.
2 1 cncph
 |-  <. <. + , x. >. , abs >. e. CPreHilOLD
3 2 elimel
 |-  if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD