Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elimphu | |- if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
|
2 | 1 | cncph | |- <. <. + , x. >. , abs >. e. CPreHilOLD |
3 | 2 | elimel | |- if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD |