Metamath Proof Explorer


Theorem elimphu

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007) (New usage is discouraged.)

Ref Expression
Assertion elimphu ifUCPreHilOLDU+×absCPreHilOLD

Proof

Step Hyp Ref Expression
1 eqid +×abs=+×abs
2 1 cncph +×absCPreHilOLD
3 2 elimel ifUCPreHilOLDU+×absCPreHilOLD