Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elimphu | ⊢ if ( 𝑈 ∈ CPreHilOLD , 𝑈 , ⟨ ⟨ + , · ⟩ , abs ⟩ ) ∈ CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ⟨ ⟨ + , · ⟩ , abs ⟩ = ⟨ ⟨ + , · ⟩ , abs ⟩ | |
2 | 1 | cncph | ⊢ ⟨ ⟨ + , · ⟩ , abs ⟩ ∈ CPreHilOLD |
3 | 2 | elimel | ⊢ if ( 𝑈 ∈ CPreHilOLD , 𝑈 , ⟨ ⟨ + , · ⟩ , abs ⟩ ) ∈ CPreHilOLD |