Metamath Proof Explorer


Definition df-ph

Description: Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of ReedSimon p. 63. The vector operation is g , the scalar product is s , and the norm is n . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ph CPreHilOLD=NrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccphlo classCPreHilOLD
1 cnv classNrmCVec
2 vg setvarg
3 vs setvars
4 vn setvarn
5 vx setvarx
6 2 cv setvarg
7 6 crn classrang
8 vy setvary
9 4 cv setvarn
10 5 cv setvarx
11 8 cv setvary
12 10 11 6 co classxgy
13 12 9 cfv classnxgy
14 cexp class^
15 c2 class2
16 13 15 14 co classnxgy2
17 caddc class+
18 c1 class1
19 18 cneg class-1
20 3 cv setvars
21 19 11 20 co class-1sy
22 10 21 6 co classxg-1sy
23 22 9 cfv classnxg-1sy
24 23 15 14 co classnxg-1sy2
25 16 24 17 co classnxgy2+nxg-1sy2
26 cmul class×
27 10 9 cfv classnx
28 27 15 14 co classnx2
29 11 9 cfv classny
30 29 15 14 co classny2
31 28 30 17 co classnx2+ny2
32 15 31 26 co class2nx2+ny2
33 25 32 wceq wffnxgy2+nxg-1sy2=2nx2+ny2
34 33 8 7 wral wffyrangnxgy2+nxg-1sy2=2nx2+ny2
35 34 5 7 wral wffxrangyrangnxgy2+nxg-1sy2=2nx2+ny2
36 35 2 3 4 coprab classgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2
37 1 36 cin classNrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2
38 0 37 wceq wffCPreHilOLD=NrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2