Metamath Proof Explorer


Theorem phnv

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion phnv UCPreHilOLDUNrmCVec

Proof

Step Hyp Ref Expression
1 df-ph CPreHilOLD=NrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2
2 inss1 NrmCVecgsn|xrangyrangnxgy2+nxg-1sy2=2nx2+ny2NrmCVec
3 1 2 eqsstri CPreHilOLDNrmCVec
4 3 sseli UCPreHilOLDUNrmCVec