Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | phnv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph | |
|
2 | inss1 | |
|
3 | 1 2 | eqsstri | |
4 | 3 | sseli | |