Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | phrel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv | ||
2 | 1 | ssriv | |
3 | nvrel | ||
4 | relss | ||
5 | 2 3 4 | mp2 |