Metamath Proof Explorer


Theorem phnvi

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis phnvi.1 UCPreHilOLD
Assertion phnvi UNrmCVec

Proof

Step Hyp Ref Expression
1 phnvi.1 UCPreHilOLD
2 phnv UCPreHilOLDUNrmCVec
3 1 2 ax-mp UNrmCVec