Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phrel | |- Rel CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnv | |- ( x e. CPreHilOLD -> x e. NrmCVec ) |
|
| 2 | 1 | ssriv | |- CPreHilOLD C_ NrmCVec |
| 3 | nvrel | |- Rel NrmCVec |
|
| 4 | relss | |- ( CPreHilOLD C_ NrmCVec -> ( Rel NrmCVec -> Rel CPreHilOLD ) ) |
|
| 5 | 2 3 4 | mp2 | |- Rel CPreHilOLD |