Metamath Proof Explorer


Theorem nvrel

Description: The class of all normed complex vectors spaces is a relation. (Contributed by NM, 14-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion nvrel
|- Rel NrmCVec

Proof

Step Hyp Ref Expression
1 nvss
 |-  NrmCVec C_ ( CVecOLD X. _V )
2 relxp
 |-  Rel ( CVecOLD X. _V )
3 relss
 |-  ( NrmCVec C_ ( CVecOLD X. _V ) -> ( Rel ( CVecOLD X. _V ) -> Rel NrmCVec ) )
4 1 2 3 mp2
 |-  Rel NrmCVec