Metamath Proof Explorer


Theorem elimph

Description: Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses elimph.1 X=BaseSetU
elimph.5 Z=0vecU
elimph.6 UCPreHilOLD
Assertion elimph ifAXAZX

Proof

Step Hyp Ref Expression
1 elimph.1 X=BaseSetU
2 elimph.5 Z=0vecU
3 elimph.6 UCPreHilOLD
4 3 phnvi UNrmCVec
5 1 2 4 elimnv ifAXAZX