Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliunid | |- ( ( x e. A /\ C e. B ) -> C e. U_ x e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe | |- ( ( x e. A /\ C e. B ) -> E. x e. A C e. B ) |
|
| 2 | eliun | |- ( C e. U_ x e. A B <-> E. x e. A C e. B ) |
|
| 3 | 1 2 | sylibr | |- ( ( x e. A /\ C e. B ) -> C e. U_ x e. A B ) |