Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliunid | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspe | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) | |
| 2 | eliun | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) | |
| 3 | 1 2 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |