Metamath Proof Explorer


Theorem elmapsnd

Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses elmapsnd.1
|- ( ph -> F Fn { A } )
elmapsnd.2
|- ( ph -> B e. V )
elmapsnd.3
|- ( ph -> ( F ` A ) e. B )
Assertion elmapsnd
|- ( ph -> F e. ( B ^m { A } ) )

Proof

Step Hyp Ref Expression
1 elmapsnd.1
 |-  ( ph -> F Fn { A } )
2 elmapsnd.2
 |-  ( ph -> B e. V )
3 elmapsnd.3
 |-  ( ph -> ( F ` A ) e. B )
4 elsni
 |-  ( x e. { A } -> x = A )
5 4 fveq2d
 |-  ( x e. { A } -> ( F ` x ) = ( F ` A ) )
6 5 adantl
 |-  ( ( ph /\ x e. { A } ) -> ( F ` x ) = ( F ` A ) )
7 3 adantr
 |-  ( ( ph /\ x e. { A } ) -> ( F ` A ) e. B )
8 6 7 eqeltrd
 |-  ( ( ph /\ x e. { A } ) -> ( F ` x ) e. B )
9 8 ralrimiva
 |-  ( ph -> A. x e. { A } ( F ` x ) e. B )
10 1 9 jca
 |-  ( ph -> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) )
11 ffnfv
 |-  ( F : { A } --> B <-> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) )
12 10 11 sylibr
 |-  ( ph -> F : { A } --> B )
13 snex
 |-  { A } e. _V
14 13 a1i
 |-  ( ph -> { A } e. _V )
15 2 14 elmapd
 |-  ( ph -> ( F e. ( B ^m { A } ) <-> F : { A } --> B ) )
16 12 15 mpbird
 |-  ( ph -> F e. ( B ^m { A } ) )