| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmapsnd.1 |
|- ( ph -> F Fn { A } ) |
| 2 |
|
elmapsnd.2 |
|- ( ph -> B e. V ) |
| 3 |
|
elmapsnd.3 |
|- ( ph -> ( F ` A ) e. B ) |
| 4 |
|
elsni |
|- ( x e. { A } -> x = A ) |
| 5 |
4
|
fveq2d |
|- ( x e. { A } -> ( F ` x ) = ( F ` A ) ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ x e. { A } ) -> ( F ` x ) = ( F ` A ) ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ x e. { A } ) -> ( F ` A ) e. B ) |
| 8 |
6 7
|
eqeltrd |
|- ( ( ph /\ x e. { A } ) -> ( F ` x ) e. B ) |
| 9 |
8
|
ralrimiva |
|- ( ph -> A. x e. { A } ( F ` x ) e. B ) |
| 10 |
1 9
|
jca |
|- ( ph -> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) ) |
| 11 |
|
ffnfv |
|- ( F : { A } --> B <-> ( F Fn { A } /\ A. x e. { A } ( F ` x ) e. B ) ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> F : { A } --> B ) |
| 13 |
|
snex |
|- { A } e. _V |
| 14 |
13
|
a1i |
|- ( ph -> { A } e. _V ) |
| 15 |
2 14
|
elmapd |
|- ( ph -> ( F e. ( B ^m { A } ) <-> F : { A } --> B ) ) |
| 16 |
12 15
|
mpbird |
|- ( ph -> F e. ( B ^m { A } ) ) |