Metamath Proof Explorer


Theorem elnnnn0c

Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006)

Ref Expression
Assertion elnnnn0c
|- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) )

Proof

Step Hyp Ref Expression
1 nnnn0
 |-  ( N e. NN -> N e. NN0 )
2 nnge1
 |-  ( N e. NN -> 1 <_ N )
3 1 2 jca
 |-  ( N e. NN -> ( N e. NN0 /\ 1 <_ N ) )
4 0lt1
 |-  0 < 1
5 0re
 |-  0 e. RR
6 1re
 |-  1 e. RR
7 nn0re
 |-  ( N e. NN0 -> N e. RR )
8 ltletr
 |-  ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) )
9 5 6 7 8 mp3an12i
 |-  ( N e. NN0 -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) )
10 4 9 mpani
 |-  ( N e. NN0 -> ( 1 <_ N -> 0 < N ) )
11 10 imdistani
 |-  ( ( N e. NN0 /\ 1 <_ N ) -> ( N e. NN0 /\ 0 < N ) )
12 elnnnn0b
 |-  ( N e. NN <-> ( N e. NN0 /\ 0 < N ) )
13 11 12 sylibr
 |-  ( ( N e. NN0 /\ 1 <_ N ) -> N e. NN )
14 3 13 impbii
 |-  ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) )