Metamath Proof Explorer


Theorem elo1mpt

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1
|- ( ph -> A C_ RR )
elo1mpt.2
|- ( ( ph /\ x e. A ) -> B e. CC )
Assertion elo1mpt
|- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> E. y e. RR E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) )

Proof

Step Hyp Ref Expression
1 elo1mpt.1
 |-  ( ph -> A C_ RR )
2 elo1mpt.2
 |-  ( ( ph /\ x e. A ) -> B e. CC )
3 2 lo1o12
 |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) )
4 2 abscld
 |-  ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR )
5 1 4 ello1mpt
 |-  ( ph -> ( ( x e. A |-> ( abs ` B ) ) e. <_O(1) <-> E. y e. RR E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) )
6 3 5 bitrd
 |-  ( ph -> ( ( x e. A |-> B ) e. O(1) <-> E. y e. RR E. m e. RR A. x e. A ( y <_ x -> ( abs ` B ) <_ m ) ) )