| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( w = A -> ( w = <. <. x , y >. , z >. <-> A = <. <. x , y >. , z >. ) ) |
| 2 |
1
|
anbi1d |
|- ( w = A -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 3 |
2
|
3exbidv |
|- ( w = A -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 4 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
| 5 |
3 4
|
elab2g |
|- ( A e. { <. <. x , y >. , z >. | ph } -> ( A e. { <. <. x , y >. , z >. | ph } <-> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) ) |
| 6 |
5
|
ibi |
|- ( A e. { <. <. x , y >. , z >. | ph } -> E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) ) |
| 7 |
|
id |
|- ( A = <. <. x , y >. , z >. -> A = <. <. x , y >. , z >. ) |
| 8 |
|
opex |
|- <. x , y >. e. _V |
| 9 |
|
vex |
|- z e. _V |
| 10 |
8 9
|
op1std |
|- ( A = <. <. x , y >. , z >. -> ( 1st ` A ) = <. x , y >. ) |
| 11 |
10
|
fveq2d |
|- ( A = <. <. x , y >. , z >. -> ( 1st ` ( 1st ` A ) ) = ( 1st ` <. x , y >. ) ) |
| 12 |
|
vex |
|- x e. _V |
| 13 |
|
vex |
|- y e. _V |
| 14 |
12 13
|
op1st |
|- ( 1st ` <. x , y >. ) = x |
| 15 |
11 14
|
eqtr2di |
|- ( A = <. <. x , y >. , z >. -> x = ( 1st ` ( 1st ` A ) ) ) |
| 16 |
10
|
fveq2d |
|- ( A = <. <. x , y >. , z >. -> ( 2nd ` ( 1st ` A ) ) = ( 2nd ` <. x , y >. ) ) |
| 17 |
12 13
|
op2nd |
|- ( 2nd ` <. x , y >. ) = y |
| 18 |
16 17
|
eqtr2di |
|- ( A = <. <. x , y >. , z >. -> y = ( 2nd ` ( 1st ` A ) ) ) |
| 19 |
15 18
|
opeq12d |
|- ( A = <. <. x , y >. , z >. -> <. x , y >. = <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. ) |
| 20 |
8 9
|
op2ndd |
|- ( A = <. <. x , y >. , z >. -> ( 2nd ` A ) = z ) |
| 21 |
20
|
eqcomd |
|- ( A = <. <. x , y >. , z >. -> z = ( 2nd ` A ) ) |
| 22 |
19 21
|
opeq12d |
|- ( A = <. <. x , y >. , z >. -> <. <. x , y >. , z >. = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 23 |
7 22
|
eqtrd |
|- ( A = <. <. x , y >. , z >. -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 24 |
23
|
adantr |
|- ( ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 25 |
24
|
exlimiv |
|- ( E. z ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 26 |
25
|
exlimivv |
|- ( E. x E. y E. z ( A = <. <. x , y >. , z >. /\ ph ) -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |
| 27 |
6 26
|
syl |
|- ( A e. { <. <. x , y >. , z >. | ph } -> A = <. <. ( 1st ` ( 1st ` A ) ) , ( 2nd ` ( 1st ` A ) ) >. , ( 2nd ` A ) >. ) |