Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclfval.a | |- A = ( Atoms ` K ) |
|
| pclfval.s | |- S = ( PSubSp ` K ) |
||
| pclfval.c | |- U = ( PCl ` K ) |
||
| elpcl.q | |- Q e. _V |
||
| Assertion | elpclN | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfval.a | |- A = ( Atoms ` K ) |
|
| 2 | pclfval.s | |- S = ( PSubSp ` K ) |
|
| 3 | pclfval.c | |- U = ( PCl ` K ) |
|
| 4 | elpcl.q | |- Q e. _V |
|
| 5 | 1 2 3 | pclvalN | |- ( ( K e. V /\ X C_ A ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |
| 6 | 5 | eleq2d | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> Q e. |^| { y e. S | X C_ y } ) ) |
| 7 | 4 | elintrab | |- ( Q e. |^| { y e. S | X C_ y } <-> A. y e. S ( X C_ y -> Q e. y ) ) |
| 8 | 6 7 | bitrdi | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) ) |