Metamath Proof Explorer


Theorem elpclN

Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a A=AtomsK
pclfval.s S=PSubSpK
pclfval.c U=PClK
elpcl.q QV
Assertion elpclN KVXAQUXySXyQy

Proof

Step Hyp Ref Expression
1 pclfval.a A=AtomsK
2 pclfval.s S=PSubSpK
3 pclfval.c U=PClK
4 elpcl.q QV
5 1 2 3 pclvalN KVXAUX=yS|Xy
6 5 eleq2d KVXAQUXQyS|Xy
7 4 elintrab QyS|XyySXyQy
8 6 7 bitrdi KVXAQUXySXyQy