Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elrelscnveq4 | |- ( R e. Rels -> ( `' R C_ R <-> A. x A. y ( x R y <-> y R x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelscnveq | |- ( R e. Rels -> ( `' R C_ R <-> `' R = R ) ) |
|
2 | elrelscnveq2 | |- ( R e. Rels -> ( `' R = R <-> A. x A. y ( x R y <-> y R x ) ) ) |
|
3 | 1 2 | bitrd | |- ( R e. Rels -> ( `' R C_ R <-> A. x A. y ( x R y <-> y R x ) ) ) |