Metamath Proof Explorer


Theorem elrelscnveq4

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion elrelscnveq4 ( 𝑅 ∈ Rels → ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 elrelscnveq ( 𝑅 ∈ Rels → ( 𝑅𝑅 𝑅 = 𝑅 ) )
2 elrelscnveq2 ( 𝑅 ∈ Rels → ( 𝑅 = 𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
3 1 2 bitrd ( 𝑅 ∈ Rels → ( 𝑅𝑅 ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )