Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrelscnveq4 | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrelscnveq | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 ⊆ 𝑅 ↔ ◡ 𝑅 = 𝑅 ) ) | |
| 2 | elrelscnveq2 | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 = 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) | |
| 3 | 1 2 | bitrd | ⊢ ( 𝑅 ∈ Rels → ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) ) |