Metamath Proof Explorer
Description: The converse of a set is an element of the class of relations.
(Contributed by Peter Mazsa, 18-Aug-2019)
|
|
Ref |
Expression |
|
Assertion |
cnvelrels |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ Rels ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
2 |
|
cnvexg |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |
3 |
|
elrelsrel |
⊢ ( ◡ 𝐴 ∈ V → ( ◡ 𝐴 ∈ Rels ↔ Rel ◡ 𝐴 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ◡ 𝐴 ∈ Rels ↔ Rel ◡ 𝐴 ) ) |
5 |
1 4
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ Rels ) |