Metamath Proof Explorer


Theorem eltrans

Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Hypothesis eltrans.1
|- A e. _V
Assertion eltrans
|- ( A e. Trans <-> Tr A )

Proof

Step Hyp Ref Expression
1 eltrans.1
 |-  A e. _V
2 df-trans
 |-  Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) )
3 2 eleq2i
 |-  ( A e. Trans <-> A e. ( _V \ ran ( ( _E o. _E ) \ _E ) ) )
4 1 dftr6
 |-  ( Tr A <-> A e. ( _V \ ran ( ( _E o. _E ) \ _E ) ) )
5 3 4 bitr4i
 |-  ( A e. Trans <-> Tr A )