Description: Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eltrans.1 | |- A e. _V |
|
| Assertion | eltrans | |- ( A e. Trans <-> Tr A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltrans.1 | |- A e. _V |
|
| 2 | df-trans | |- Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) ) |
|
| 3 | 2 | eleq2i | |- ( A e. Trans <-> A e. ( _V \ ran ( ( _E o. _E ) \ _E ) ) ) |
| 4 | 1 | dftr6 | |- ( Tr A <-> A e. ( _V \ ran ( ( _E o. _E ) \ _E ) ) ) |
| 5 | 3 4 | bitr4i | |- ( A e. Trans <-> Tr A ) |