Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007) (Proof shortened by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eluzsubi.1 | |- M e. ZZ | |
| eluzsubi.2 | |- K e. ZZ | ||
| Assertion | eluzsubi | |- ( N e. ( ZZ>= ` ( M + K ) ) -> ( N - K ) e. ( ZZ>= ` M ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluzsubi.1 | |- M e. ZZ | |
| 2 | eluzsubi.2 | |- K e. ZZ | |
| 3 | eluzsub | |- ( ( M e. ZZ /\ K e. ZZ /\ N e. ( ZZ>= ` ( M + K ) ) ) -> ( N - K ) e. ( ZZ>= ` M ) ) | |
| 4 | 1 2 3 | mp3an12 | |- ( N e. ( ZZ>= ` ( M + K ) ) -> ( N - K ) e. ( ZZ>= ` M ) ) |