Metamath Proof Explorer
		
		
		
		Description:  Membership in an earlier upper set of integers.  (Contributed by Paul
       Chapman, 22-Nov-2007)  (Proof shortened by SN, 7-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eluzsubi.1 | ⊢ 𝑀  ∈  ℤ | 
					
						|  |  | eluzsubi.2 | ⊢ 𝐾  ∈  ℤ | 
				
					|  | Assertion | eluzsubi | ⊢  ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) )  →  ( 𝑁  −  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzsubi.1 | ⊢ 𝑀  ∈  ℤ | 
						
							| 2 |  | eluzsubi.2 | ⊢ 𝐾  ∈  ℤ | 
						
							| 3 |  | eluzsub | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) )  →  ( 𝑁  −  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) )  →  ( 𝑁  −  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) |