Description: An element of a well-founded set is well-founded. (Contributed by BTernaryTau, 30-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elwf | |- ( ( A e. U. ( R1 " On ) /\ B e. A ) -> B e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | |- ( B e. A -> B C_ U. A ) |
|
| 2 | uniwf | |- ( A e. U. ( R1 " On ) <-> U. A e. U. ( R1 " On ) ) |
|
| 3 | sswf | |- ( ( U. A e. U. ( R1 " On ) /\ B C_ U. A ) -> B e. U. ( R1 " On ) ) |
|
| 4 | 2 3 | sylanb | |- ( ( A e. U. ( R1 " On ) /\ B C_ U. A ) -> B e. U. ( R1 " On ) ) |
| 5 | 1 4 | sylan2 | |- ( ( A e. U. ( R1 " On ) /\ B e. A ) -> B e. U. ( R1 " On ) ) |