| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1elwf |
|- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
| 2 |
|
rankelb |
|- ( A e. U. ( R1 " On ) -> ( C e. A -> ( rank ` C ) e. ( rank ` A ) ) ) |
| 3 |
1 2
|
syl |
|- ( A e. ( R1 ` B ) -> ( C e. A -> ( rank ` C ) e. ( rank ` A ) ) ) |
| 4 |
3
|
imp |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( rank ` C ) e. ( rank ` A ) ) |
| 5 |
|
rankr1ai |
|- ( A e. ( R1 ` B ) -> ( rank ` A ) e. B ) |
| 6 |
|
elfvdm |
|- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
| 7 |
|
r1fnon |
|- R1 Fn On |
| 8 |
7
|
fndmi |
|- dom R1 = On |
| 9 |
6 8
|
eleqtrdi |
|- ( A e. ( R1 ` B ) -> B e. On ) |
| 10 |
|
ontr1 |
|- ( B e. On -> ( ( ( rank ` C ) e. ( rank ` A ) /\ ( rank ` A ) e. B ) -> ( rank ` C ) e. B ) ) |
| 11 |
9 10
|
syl |
|- ( A e. ( R1 ` B ) -> ( ( ( rank ` C ) e. ( rank ` A ) /\ ( rank ` A ) e. B ) -> ( rank ` C ) e. B ) ) |
| 12 |
5 11
|
mpan2d |
|- ( A e. ( R1 ` B ) -> ( ( rank ` C ) e. ( rank ` A ) -> ( rank ` C ) e. B ) ) |
| 13 |
12
|
adantr |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( ( rank ` C ) e. ( rank ` A ) -> ( rank ` C ) e. B ) ) |
| 14 |
4 13
|
mpd |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( rank ` C ) e. B ) |
| 15 |
|
elwf |
|- ( ( A e. U. ( R1 " On ) /\ C e. A ) -> C e. U. ( R1 " On ) ) |
| 16 |
1 15
|
sylan |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> C e. U. ( R1 " On ) ) |
| 17 |
|
rankr1ag |
|- ( ( C e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) ) |
| 18 |
6 17
|
sylan2 |
|- ( ( C e. U. ( R1 " On ) /\ A e. ( R1 ` B ) ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) ) |
| 19 |
18
|
ancoms |
|- ( ( A e. ( R1 ` B ) /\ C e. U. ( R1 " On ) ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) ) |
| 20 |
16 19
|
syldan |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) ) |
| 21 |
14 20
|
mpbird |
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> C e. ( R1 ` B ) ) |