Metamath Proof Explorer


Theorem r1elcl

Description: Each set of the cumulative hierarchy is closed under membership. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion r1elcl
|- ( ( A e. ( R1 ` B ) /\ C e. A ) -> C e. ( R1 ` B ) )

Proof

Step Hyp Ref Expression
1 r1elwf
 |-  ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) )
2 rankelb
 |-  ( A e. U. ( R1 " On ) -> ( C e. A -> ( rank ` C ) e. ( rank ` A ) ) )
3 1 2 syl
 |-  ( A e. ( R1 ` B ) -> ( C e. A -> ( rank ` C ) e. ( rank ` A ) ) )
4 3 imp
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( rank ` C ) e. ( rank ` A ) )
5 rankr1ai
 |-  ( A e. ( R1 ` B ) -> ( rank ` A ) e. B )
6 elfvdm
 |-  ( A e. ( R1 ` B ) -> B e. dom R1 )
7 r1fnon
 |-  R1 Fn On
8 7 fndmi
 |-  dom R1 = On
9 6 8 eleqtrdi
 |-  ( A e. ( R1 ` B ) -> B e. On )
10 ontr1
 |-  ( B e. On -> ( ( ( rank ` C ) e. ( rank ` A ) /\ ( rank ` A ) e. B ) -> ( rank ` C ) e. B ) )
11 9 10 syl
 |-  ( A e. ( R1 ` B ) -> ( ( ( rank ` C ) e. ( rank ` A ) /\ ( rank ` A ) e. B ) -> ( rank ` C ) e. B ) )
12 5 11 mpan2d
 |-  ( A e. ( R1 ` B ) -> ( ( rank ` C ) e. ( rank ` A ) -> ( rank ` C ) e. B ) )
13 12 adantr
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( ( rank ` C ) e. ( rank ` A ) -> ( rank ` C ) e. B ) )
14 4 13 mpd
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( rank ` C ) e. B )
15 elwf
 |-  ( ( A e. U. ( R1 " On ) /\ C e. A ) -> C e. U. ( R1 " On ) )
16 1 15 sylan
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> C e. U. ( R1 " On ) )
17 rankr1ag
 |-  ( ( C e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) )
18 6 17 sylan2
 |-  ( ( C e. U. ( R1 " On ) /\ A e. ( R1 ` B ) ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) )
19 18 ancoms
 |-  ( ( A e. ( R1 ` B ) /\ C e. U. ( R1 " On ) ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) )
20 16 19 syldan
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> ( C e. ( R1 ` B ) <-> ( rank ` C ) e. B ) )
21 14 20 mpbird
 |-  ( ( A e. ( R1 ` B ) /\ C e. A ) -> C e. ( R1 ` B ) )