| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1elwf |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 2 |
|
rankelb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐶 ∈ 𝐴 → ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( 𝐶 ∈ 𝐴 → ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 4 |
3
|
imp |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) ) |
| 5 |
|
rankr1ai |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 6 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ dom 𝑅1 ) |
| 7 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 8 |
7
|
fndmi |
⊢ dom 𝑅1 = On |
| 9 |
6 8
|
eleqtrdi |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐵 ∈ On ) |
| 10 |
|
ontr1 |
⊢ ( 𝐵 ∈ On → ( ( ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 12 |
5 11
|
mpan2d |
⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ( rank ‘ 𝐶 ) ∈ ( rank ‘ 𝐴 ) → ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 14 |
4 13
|
mpd |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( rank ‘ 𝐶 ) ∈ 𝐵 ) |
| 15 |
|
elwf |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ∪ ( 𝑅1 “ On ) ) |
| 16 |
1 15
|
sylan |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ∪ ( 𝑅1 “ On ) ) |
| 17 |
|
rankr1ag |
⊢ ( ( 𝐶 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 18 |
6 17
|
sylan2 |
⊢ ( ( 𝐶 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) → ( 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ ∪ ( 𝑅1 “ On ) ) → ( 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 20 |
16 19
|
syldan |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐶 ) ∈ 𝐵 ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ ( 𝑅1 ‘ 𝐵 ) ) |