Step |
Hyp |
Ref |
Expression |
1 |
|
r1elssi |
|- ( B e. U. ( R1 " On ) -> B C_ U. ( R1 " On ) ) |
2 |
1
|
sseld |
|- ( B e. U. ( R1 " On ) -> ( A e. B -> A e. U. ( R1 " On ) ) ) |
3 |
|
rankidn |
|- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
4 |
2 3
|
syl6 |
|- ( B e. U. ( R1 " On ) -> ( A e. B -> -. A e. ( R1 ` ( rank ` A ) ) ) ) |
5 |
4
|
imp |
|- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
6 |
|
rankon |
|- ( rank ` B ) e. On |
7 |
|
rankon |
|- ( rank ` A ) e. On |
8 |
|
ontri1 |
|- ( ( ( rank ` B ) e. On /\ ( rank ` A ) e. On ) -> ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) |
10 |
|
rankdmr1 |
|- ( rank ` B ) e. dom R1 |
11 |
|
rankdmr1 |
|- ( rank ` A ) e. dom R1 |
12 |
|
r1ord3g |
|- ( ( ( rank ` B ) e. dom R1 /\ ( rank ` A ) e. dom R1 ) -> ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) ) |
13 |
10 11 12
|
mp2an |
|- ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) |
14 |
|
r1rankidb |
|- ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
15 |
14
|
sselda |
|- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> A e. ( R1 ` ( rank ` B ) ) ) |
16 |
|
ssel |
|- ( ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) -> ( A e. ( R1 ` ( rank ` B ) ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
17 |
13 15 16
|
syl2imc |
|- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( ( rank ` B ) C_ ( rank ` A ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
18 |
9 17
|
syl5bir |
|- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( -. ( rank ` A ) e. ( rank ` B ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
19 |
5 18
|
mt3d |
|- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) ) |
20 |
19
|
ex |
|- ( B e. U. ( R1 " On ) -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) |