Step |
Hyp |
Ref |
Expression |
1 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
2 |
1
|
simpri |
|- Lim dom R1 |
3 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
4 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
5 |
2 3 4
|
mp2b |
|- dom R1 C_ On |
6 |
|
elfvdm |
|- ( A e. ( R1 ` B ) -> B e. dom R1 ) |
7 |
5 6
|
sselid |
|- ( A e. ( R1 ` B ) -> B e. On ) |
8 |
|
r1tr |
|- Tr ( R1 ` B ) |
9 |
|
trss |
|- ( Tr ( R1 ` B ) -> ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) ) |
10 |
8 9
|
ax-mp |
|- ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) |
11 |
|
elpwg |
|- ( A e. ( R1 ` B ) -> ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) ) |
12 |
10 11
|
mpbird |
|- ( A e. ( R1 ` B ) -> A e. ~P ( R1 ` B ) ) |
13 |
|
r1sucg |
|- ( B e. dom R1 -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
14 |
6 13
|
syl |
|- ( A e. ( R1 ` B ) -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) |
15 |
12 14
|
eleqtrrd |
|- ( A e. ( R1 ` B ) -> A e. ( R1 ` suc B ) ) |
16 |
|
suceq |
|- ( x = B -> suc x = suc B ) |
17 |
16
|
fveq2d |
|- ( x = B -> ( R1 ` suc x ) = ( R1 ` suc B ) ) |
18 |
17
|
eleq2d |
|- ( x = B -> ( A e. ( R1 ` suc x ) <-> A e. ( R1 ` suc B ) ) ) |
19 |
18
|
rspcev |
|- ( ( B e. On /\ A e. ( R1 ` suc B ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
20 |
7 15 19
|
syl2anc |
|- ( A e. ( R1 ` B ) -> E. x e. On A e. ( R1 ` suc x ) ) |
21 |
|
rankwflemb |
|- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |
22 |
20 21
|
sylibr |
|- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |