Step |
Hyp |
Ref |
Expression |
1 |
|
eluni |
|- ( A e. U. ( R1 " On ) <-> E. y ( A e. y /\ y e. ( R1 " On ) ) ) |
2 |
|
eleq2 |
|- ( ( R1 ` x ) = y -> ( A e. ( R1 ` x ) <-> A e. y ) ) |
3 |
2
|
biimprcd |
|- ( A e. y -> ( ( R1 ` x ) = y -> A e. ( R1 ` x ) ) ) |
4 |
|
r1tr |
|- Tr ( R1 ` x ) |
5 |
|
trss |
|- ( Tr ( R1 ` x ) -> ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) ) |
6 |
4 5
|
ax-mp |
|- ( A e. ( R1 ` x ) -> A C_ ( R1 ` x ) ) |
7 |
|
elpwg |
|- ( A e. ( R1 ` x ) -> ( A e. ~P ( R1 ` x ) <-> A C_ ( R1 ` x ) ) ) |
8 |
6 7
|
mpbird |
|- ( A e. ( R1 ` x ) -> A e. ~P ( R1 ` x ) ) |
9 |
|
elfvdm |
|- ( A e. ( R1 ` x ) -> x e. dom R1 ) |
10 |
|
r1sucg |
|- ( x e. dom R1 -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
11 |
9 10
|
syl |
|- ( A e. ( R1 ` x ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
12 |
8 11
|
eleqtrrd |
|- ( A e. ( R1 ` x ) -> A e. ( R1 ` suc x ) ) |
13 |
12
|
a1i |
|- ( x e. On -> ( A e. ( R1 ` x ) -> A e. ( R1 ` suc x ) ) ) |
14 |
3 13
|
syl9 |
|- ( A e. y -> ( x e. On -> ( ( R1 ` x ) = y -> A e. ( R1 ` suc x ) ) ) ) |
15 |
14
|
reximdvai |
|- ( A e. y -> ( E. x e. On ( R1 ` x ) = y -> E. x e. On A e. ( R1 ` suc x ) ) ) |
16 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
17 |
16
|
simpli |
|- Fun R1 |
18 |
|
fvelima |
|- ( ( Fun R1 /\ y e. ( R1 " On ) ) -> E. x e. On ( R1 ` x ) = y ) |
19 |
17 18
|
mpan |
|- ( y e. ( R1 " On ) -> E. x e. On ( R1 ` x ) = y ) |
20 |
15 19
|
impel |
|- ( ( A e. y /\ y e. ( R1 " On ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
21 |
20
|
exlimiv |
|- ( E. y ( A e. y /\ y e. ( R1 " On ) ) -> E. x e. On A e. ( R1 ` suc x ) ) |
22 |
1 21
|
sylbi |
|- ( A e. U. ( R1 " On ) -> E. x e. On A e. ( R1 ` suc x ) ) |
23 |
|
elfvdm |
|- ( A e. ( R1 ` suc x ) -> suc x e. dom R1 ) |
24 |
|
fvelrn |
|- ( ( Fun R1 /\ suc x e. dom R1 ) -> ( R1 ` suc x ) e. ran R1 ) |
25 |
17 23 24
|
sylancr |
|- ( A e. ( R1 ` suc x ) -> ( R1 ` suc x ) e. ran R1 ) |
26 |
|
df-ima |
|- ( R1 " On ) = ran ( R1 |` On ) |
27 |
|
funrel |
|- ( Fun R1 -> Rel R1 ) |
28 |
17 27
|
ax-mp |
|- Rel R1 |
29 |
16
|
simpri |
|- Lim dom R1 |
30 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
31 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
32 |
29 30 31
|
mp2b |
|- dom R1 C_ On |
33 |
|
relssres |
|- ( ( Rel R1 /\ dom R1 C_ On ) -> ( R1 |` On ) = R1 ) |
34 |
28 32 33
|
mp2an |
|- ( R1 |` On ) = R1 |
35 |
34
|
rneqi |
|- ran ( R1 |` On ) = ran R1 |
36 |
26 35
|
eqtri |
|- ( R1 " On ) = ran R1 |
37 |
25 36
|
eleqtrrdi |
|- ( A e. ( R1 ` suc x ) -> ( R1 ` suc x ) e. ( R1 " On ) ) |
38 |
|
elunii |
|- ( ( A e. ( R1 ` suc x ) /\ ( R1 ` suc x ) e. ( R1 " On ) ) -> A e. U. ( R1 " On ) ) |
39 |
37 38
|
mpdan |
|- ( A e. ( R1 ` suc x ) -> A e. U. ( R1 " On ) ) |
40 |
39
|
rexlimivw |
|- ( E. x e. On A e. ( R1 ` suc x ) -> A e. U. ( R1 " On ) ) |
41 |
22 40
|
impbii |
|- ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) |