Metamath Proof Explorer


Theorem rankwflemb

Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion rankwflemb A R1 On x On A R1 suc x

Proof

Step Hyp Ref Expression
1 eluni A R1 On y A y y R1 On
2 eleq2 R1 x = y A R1 x A y
3 2 biimprcd A y R1 x = y A R1 x
4 r1tr Tr R1 x
5 trss Tr R1 x A R1 x A R1 x
6 4 5 ax-mp A R1 x A R1 x
7 elpwg A R1 x A 𝒫 R1 x A R1 x
8 6 7 mpbird A R1 x A 𝒫 R1 x
9 elfvdm A R1 x x dom R1
10 r1sucg x dom R1 R1 suc x = 𝒫 R1 x
11 9 10 syl A R1 x R1 suc x = 𝒫 R1 x
12 8 11 eleqtrrd A R1 x A R1 suc x
13 12 a1i x On A R1 x A R1 suc x
14 3 13 syl9 A y x On R1 x = y A R1 suc x
15 14 reximdvai A y x On R1 x = y x On A R1 suc x
16 r1funlim Fun R1 Lim dom R1
17 16 simpli Fun R1
18 fvelima Fun R1 y R1 On x On R1 x = y
19 17 18 mpan y R1 On x On R1 x = y
20 15 19 impel A y y R1 On x On A R1 suc x
21 20 exlimiv y A y y R1 On x On A R1 suc x
22 1 21 sylbi A R1 On x On A R1 suc x
23 elfvdm A R1 suc x suc x dom R1
24 fvelrn Fun R1 suc x dom R1 R1 suc x ran R1
25 17 23 24 sylancr A R1 suc x R1 suc x ran R1
26 df-ima R1 On = ran R1 On
27 funrel Fun R1 Rel R1
28 17 27 ax-mp Rel R1
29 16 simpri Lim dom R1
30 limord Lim dom R1 Ord dom R1
31 ordsson Ord dom R1 dom R1 On
32 29 30 31 mp2b dom R1 On
33 relssres Rel R1 dom R1 On R1 On = R1
34 28 32 33 mp2an R1 On = R1
35 34 rneqi ran R1 On = ran R1
36 26 35 eqtri R1 On = ran R1
37 25 36 eleqtrrdi A R1 suc x R1 suc x R1 On
38 elunii A R1 suc x R1 suc x R1 On A R1 On
39 37 38 mpdan A R1 suc x A R1 On
40 39 rexlimivw x On A R1 suc x A R1 On
41 22 40 impbii A R1 On x On A R1 suc x