| Step |
Hyp |
Ref |
Expression |
| 1 |
|
endisj.1 |
|- A e. _V |
| 2 |
|
endisj.2 |
|- B e. _V |
| 3 |
|
0ex |
|- (/) e. _V |
| 4 |
1 3
|
xpsnen |
|- ( A X. { (/) } ) ~~ A |
| 5 |
|
1oex |
|- 1o e. _V |
| 6 |
2 5
|
xpsnen |
|- ( B X. { 1o } ) ~~ B |
| 7 |
4 6
|
pm3.2i |
|- ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) |
| 8 |
|
xp01disj |
|- ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) |
| 9 |
|
p0ex |
|- { (/) } e. _V |
| 10 |
1 9
|
xpex |
|- ( A X. { (/) } ) e. _V |
| 11 |
|
snex |
|- { 1o } e. _V |
| 12 |
2 11
|
xpex |
|- ( B X. { 1o } ) e. _V |
| 13 |
|
breq1 |
|- ( x = ( A X. { (/) } ) -> ( x ~~ A <-> ( A X. { (/) } ) ~~ A ) ) |
| 14 |
|
breq1 |
|- ( y = ( B X. { 1o } ) -> ( y ~~ B <-> ( B X. { 1o } ) ~~ B ) ) |
| 15 |
13 14
|
bi2anan9 |
|- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x ~~ A /\ y ~~ B ) <-> ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) ) ) |
| 16 |
|
ineq12 |
|- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( x i^i y ) = ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( x i^i y ) = (/) <-> ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) |
| 18 |
15 17
|
anbi12d |
|- ( ( x = ( A X. { (/) } ) /\ y = ( B X. { 1o } ) ) -> ( ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) <-> ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) ) ) |
| 19 |
10 12 18
|
spc2ev |
|- ( ( ( ( A X. { (/) } ) ~~ A /\ ( B X. { 1o } ) ~~ B ) /\ ( ( A X. { (/) } ) i^i ( B X. { 1o } ) ) = (/) ) -> E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) ) |
| 20 |
7 8 19
|
mp2an |
|- E. x E. y ( ( x ~~ A /\ y ~~ B ) /\ ( x i^i y ) = (/) ) |