Description: The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epoo | |- ( ( A e. Even /\ B e. Odd ) -> ( A + B ) e. Odd ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | evenz | |- ( A e. Even -> A e. ZZ ) | |
| 2 | 1 | zcnd | |- ( A e. Even -> A e. CC ) | 
| 3 | oddz | |- ( B e. Odd -> B e. ZZ ) | |
| 4 | 3 | zcnd | |- ( B e. Odd -> B e. CC ) | 
| 5 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) | |
| 6 | 2 4 5 | syl2an | |- ( ( A e. Even /\ B e. Odd ) -> ( A + B ) = ( B + A ) ) | 
| 7 | opeoALTV | |- ( ( B e. Odd /\ A e. Even ) -> ( B + A ) e. Odd ) | |
| 8 | 7 | ancoms | |- ( ( A e. Even /\ B e. Odd ) -> ( B + A ) e. Odd ) | 
| 9 | 6 8 | eqeltrd | |- ( ( A e. Even /\ B e. Odd ) -> ( A + B ) e. Odd ) |