| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( A e. Odd -> A e. ZZ ) | 
						
							| 2 |  | evenz |  |-  ( B e. Even -> B e. ZZ ) | 
						
							| 3 |  | zaddcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. Odd /\ B e. Even ) -> ( A + B ) e. ZZ ) | 
						
							| 5 |  | eqeq1 |  |-  ( a = A -> ( a = ( ( 2 x. i ) + 1 ) <-> A = ( ( 2 x. i ) + 1 ) ) ) | 
						
							| 6 | 5 | rexbidv |  |-  ( a = A -> ( E. i e. ZZ a = ( ( 2 x. i ) + 1 ) <-> E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) | 
						
							| 7 |  | dfodd6 |  |-  Odd = { a e. ZZ | E. i e. ZZ a = ( ( 2 x. i ) + 1 ) } | 
						
							| 8 | 6 7 | elrab2 |  |-  ( A e. Odd <-> ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) ) | 
						
							| 9 |  | eqeq1 |  |-  ( b = B -> ( b = ( 2 x. j ) <-> B = ( 2 x. j ) ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( b = B -> ( E. j e. ZZ b = ( 2 x. j ) <-> E. j e. ZZ B = ( 2 x. j ) ) ) | 
						
							| 11 |  | dfeven4 |  |-  Even = { b e. ZZ | E. j e. ZZ b = ( 2 x. j ) } | 
						
							| 12 | 10 11 | elrab2 |  |-  ( B e. Even <-> ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) ) | 
						
							| 13 |  | zaddcl |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( i + j ) e. ZZ ) | 
						
							| 14 | 13 | ex |  |-  ( i e. ZZ -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) | 
						
							| 15 | 14 | ad3antlr |  |-  ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( i + j ) e. ZZ ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( i + j ) e. ZZ ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( i + j ) e. ZZ ) | 
						
							| 18 |  | oveq2 |  |-  ( n = ( i + j ) -> ( 2 x. n ) = ( 2 x. ( i + j ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( n = ( i + j ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( n = ( i + j ) -> ( ( A + B ) = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) /\ n = ( i + j ) ) -> ( ( A + B ) = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) | 
						
							| 22 |  | oveq12 |  |-  ( ( A = ( ( 2 x. i ) + 1 ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) | 
						
							| 23 | 22 | ex |  |-  ( A = ( ( 2 x. i ) + 1 ) -> ( B = ( 2 x. j ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) ) | 
						
							| 24 | 23 | ad3antlr |  |-  ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( B = ( 2 x. j ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) ) | 
						
							| 26 |  | 2cnd |  |-  ( ( j e. ZZ /\ i e. ZZ ) -> 2 e. CC ) | 
						
							| 27 |  | zcn |  |-  ( i e. ZZ -> i e. CC ) | 
						
							| 28 | 27 | adantl |  |-  ( ( j e. ZZ /\ i e. ZZ ) -> i e. CC ) | 
						
							| 29 | 26 28 | mulcld |  |-  ( ( j e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC ) | 
						
							| 30 | 29 | ancoms |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. i ) e. CC ) | 
						
							| 31 |  | 1cnd |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> 1 e. CC ) | 
						
							| 32 |  | 2cnd |  |-  ( i e. ZZ -> 2 e. CC ) | 
						
							| 33 |  | zcn |  |-  ( j e. ZZ -> j e. CC ) | 
						
							| 34 |  | mulcl |  |-  ( ( 2 e. CC /\ j e. CC ) -> ( 2 x. j ) e. CC ) | 
						
							| 35 | 32 33 34 | syl2an |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. j ) e. CC ) | 
						
							| 36 | 30 31 35 | add32d |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( ( 2 x. i ) + ( 2 x. j ) ) + 1 ) ) | 
						
							| 37 |  | 2cnd |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> 2 e. CC ) | 
						
							| 38 | 27 | adantr |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> i e. CC ) | 
						
							| 39 | 33 | adantl |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> j e. CC ) | 
						
							| 40 | 37 38 39 | adddid |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( 2 x. ( i + j ) ) = ( ( 2 x. i ) + ( 2 x. j ) ) ) | 
						
							| 41 | 40 | eqcomd |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( ( 2 x. i ) + ( 2 x. j ) ) = ( 2 x. ( i + j ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + ( 2 x. j ) ) + 1 ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 43 | 36 42 | eqtrd |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 44 | 43 | ex |  |-  ( i e. ZZ -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) | 
						
							| 45 | 44 | ad3antlr |  |-  ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( j e. ZZ -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) ) | 
						
							| 46 | 45 | imp |  |-  ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( ( ( 2 x. i ) + 1 ) + ( 2 x. j ) ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 48 | 25 47 | eqtrd |  |-  ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> ( A + B ) = ( ( 2 x. ( i + j ) ) + 1 ) ) | 
						
							| 49 | 17 21 48 | rspcedvd |  |-  ( ( ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) /\ j e. ZZ ) /\ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 50 | 49 | rexlimdva2 |  |-  ( ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) /\ B e. ZZ ) -> ( E. j e. ZZ B = ( 2 x. j ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 51 | 50 | expimpd |  |-  ( ( ( A e. ZZ /\ i e. ZZ ) /\ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 52 | 51 | r19.29an |  |-  ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( ( B e. ZZ /\ E. j e. ZZ B = ( 2 x. j ) ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 53 | 12 52 | biimtrid |  |-  ( ( A e. ZZ /\ E. i e. ZZ A = ( ( 2 x. i ) + 1 ) ) -> ( B e. Even -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 54 | 8 53 | sylbi |  |-  ( A e. Odd -> ( B e. Even -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 55 | 54 | imp |  |-  ( ( A e. Odd /\ B e. Even ) -> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) | 
						
							| 56 |  | eqeq1 |  |-  ( z = ( A + B ) -> ( z = ( ( 2 x. n ) + 1 ) <-> ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 57 | 56 | rexbidv |  |-  ( z = ( A + B ) -> ( E. n e. ZZ z = ( ( 2 x. n ) + 1 ) <-> E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 58 |  | dfodd6 |  |-  Odd = { z e. ZZ | E. n e. ZZ z = ( ( 2 x. n ) + 1 ) } | 
						
							| 59 | 57 58 | elrab2 |  |-  ( ( A + B ) e. Odd <-> ( ( A + B ) e. ZZ /\ E. n e. ZZ ( A + B ) = ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 60 | 4 55 59 | sylanbrc |  |-  ( ( A e. Odd /\ B e. Even ) -> ( A + B ) e. Odd ) |