| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz | ⊢ ( 𝐴  ∈   Odd   →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | evenz | ⊢ ( 𝐵  ∈   Even   →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | zaddcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈   Odd   ∧  𝐵  ∈   Even  )  →  ( 𝐴  +  𝐵 )  ∈  ℤ ) | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  =  ( ( 2  ·  𝑖 )  +  1 )  ↔  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( ( 2  ·  𝑖 )  +  1 )  ↔  ∃ 𝑖  ∈  ℤ 𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) ) ) | 
						
							| 7 |  | dfodd6 | ⊢  Odd   =  { 𝑎  ∈  ℤ  ∣  ∃ 𝑖  ∈  ℤ 𝑎  =  ( ( 2  ·  𝑖 )  +  1 ) } | 
						
							| 8 | 6 7 | elrab2 | ⊢ ( 𝐴  ∈   Odd   ↔  ( 𝐴  ∈  ℤ  ∧  ∃ 𝑖  ∈  ℤ 𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) ) ) | 
						
							| 9 |  | eqeq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏  =  ( 2  ·  𝑗 )  ↔  𝐵  =  ( 2  ·  𝑗 ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∃ 𝑗  ∈  ℤ 𝑏  =  ( 2  ·  𝑗 )  ↔  ∃ 𝑗  ∈  ℤ 𝐵  =  ( 2  ·  𝑗 ) ) ) | 
						
							| 11 |  | dfeven4 | ⊢  Even   =  { 𝑏  ∈  ℤ  ∣  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 2  ·  𝑗 ) } | 
						
							| 12 | 10 11 | elrab2 | ⊢ ( 𝐵  ∈   Even   ↔  ( 𝐵  ∈  ℤ  ∧  ∃ 𝑗  ∈  ℤ 𝐵  =  ( 2  ·  𝑗 ) ) ) | 
						
							| 13 |  | zaddcl | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑖  ∈  ℤ  →  ( 𝑗  ∈  ℤ  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) ) | 
						
							| 15 | 14 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  →  ( 𝑗  ∈  ℤ  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑖  +  𝑗 )  →  ( 2  ·  𝑛 )  =  ( 2  ·  ( 𝑖  +  𝑗 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑛  =  ( 𝑖  +  𝑗 )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 20 | 19 | eqeq2d | ⊢ ( 𝑛  =  ( 𝑖  +  𝑗 )  →  ( ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ( 𝐴  +  𝐵 )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  ∧  𝑛  =  ( 𝑖  +  𝑗 ) )  →  ( ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ( 𝐴  +  𝐵 )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) ) | 
						
							| 22 |  | oveq12 | ⊢ ( ( 𝐴  =  ( ( 2  ·  𝑖 )  +  1 )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ( 𝐴  +  𝐵 )  =  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝐴  =  ( ( 2  ·  𝑖 )  +  1 )  →  ( 𝐵  =  ( 2  ·  𝑗 )  →  ( 𝐴  +  𝐵 )  =  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) ) ) ) | 
						
							| 24 | 23 | ad3antlr | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  →  ( 𝐵  =  ( 2  ·  𝑗 )  →  ( 𝐴  +  𝐵 )  =  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ( 𝐴  +  𝐵 )  =  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) ) ) | 
						
							| 26 |  | 2cnd | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 27 |  | zcn | ⊢ ( 𝑖  ∈  ℤ  →  𝑖  ∈  ℂ ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  𝑖  ∈  ℂ ) | 
						
							| 29 | 26 28 | mulcld | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑖  ∈  ℤ )  →  ( 2  ·  𝑖 )  ∈  ℂ ) | 
						
							| 30 | 29 | ancoms | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 2  ·  𝑖 )  ∈  ℂ ) | 
						
							| 31 |  | 1cnd | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  1  ∈  ℂ ) | 
						
							| 32 |  | 2cnd | ⊢ ( 𝑖  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 33 |  | zcn | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ℂ ) | 
						
							| 34 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  𝑗  ∈  ℂ )  →  ( 2  ·  𝑗 )  ∈  ℂ ) | 
						
							| 35 | 32 33 34 | syl2an | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 2  ·  𝑗 )  ∈  ℂ ) | 
						
							| 36 | 30 31 35 | add32d | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( ( 2  ·  𝑖 )  +  ( 2  ·  𝑗 ) )  +  1 ) ) | 
						
							| 37 |  | 2cnd | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  2  ∈  ℂ ) | 
						
							| 38 | 27 | adantr | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  𝑖  ∈  ℂ ) | 
						
							| 39 | 33 | adantl | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  𝑗  ∈  ℂ ) | 
						
							| 40 | 37 38 39 | adddid | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 2  ·  ( 𝑖  +  𝑗 ) )  =  ( ( 2  ·  𝑖 )  +  ( 2  ·  𝑗 ) ) ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( ( 2  ·  𝑖 )  +  ( 2  ·  𝑗 ) )  =  ( 2  ·  ( 𝑖  +  𝑗 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( ( ( 2  ·  𝑖 )  +  ( 2  ·  𝑗 ) )  +  1 )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 43 | 36 42 | eqtrd | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑖  ∈  ℤ  →  ( 𝑗  ∈  ℤ  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) ) | 
						
							| 45 | 44 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  →  ( 𝑗  ∈  ℤ  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) ) | 
						
							| 46 | 45 | imp | ⊢ ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ( ( ( 2  ·  𝑖 )  +  1 )  +  ( 2  ·  𝑗 ) )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 48 | 25 47 | eqtrd | ⊢ ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ( 𝐴  +  𝐵 )  =  ( ( 2  ·  ( 𝑖  +  𝑗 ) )  +  1 ) ) | 
						
							| 49 | 17 21 48 | rspcedvd | ⊢ ( ( ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  ∧  𝑗  ∈  ℤ )  ∧  𝐵  =  ( 2  ·  𝑗 ) )  →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 50 | 49 | rexlimdva2 | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  ∧  𝐵  ∈  ℤ )  →  ( ∃ 𝑗  ∈  ℤ 𝐵  =  ( 2  ·  𝑗 )  →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 51 | 50 | expimpd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑖  ∈  ℤ )  ∧  𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  →  ( ( 𝐵  ∈  ℤ  ∧  ∃ 𝑗  ∈  ℤ 𝐵  =  ( 2  ·  𝑗 ) )  →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 52 | 51 | r19.29an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ∃ 𝑖  ∈  ℤ 𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  →  ( ( 𝐵  ∈  ℤ  ∧  ∃ 𝑗  ∈  ℤ 𝐵  =  ( 2  ·  𝑗 ) )  →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 53 | 12 52 | biimtrid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ∃ 𝑖  ∈  ℤ 𝐴  =  ( ( 2  ·  𝑖 )  +  1 ) )  →  ( 𝐵  ∈   Even   →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 54 | 8 53 | sylbi | ⊢ ( 𝐴  ∈   Odd   →  ( 𝐵  ∈   Even   →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 55 | 54 | imp | ⊢ ( ( 𝐴  ∈   Odd   ∧  𝐵  ∈   Even  )  →  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 56 |  | eqeq1 | ⊢ ( 𝑧  =  ( 𝐴  +  𝐵 )  →  ( 𝑧  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 57 | 56 | rexbidv | ⊢ ( 𝑧  =  ( 𝐴  +  𝐵 )  →  ( ∃ 𝑛  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑛 )  +  1 )  ↔  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 58 |  | dfodd6 | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ∃ 𝑛  ∈  ℤ 𝑧  =  ( ( 2  ·  𝑛 )  +  1 ) } | 
						
							| 59 | 57 58 | elrab2 | ⊢ ( ( 𝐴  +  𝐵 )  ∈   Odd   ↔  ( ( 𝐴  +  𝐵 )  ∈  ℤ  ∧  ∃ 𝑛  ∈  ℤ ( 𝐴  +  𝐵 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 60 | 4 55 59 | sylanbrc | ⊢ ( ( 𝐴  ∈   Odd   ∧  𝐵  ∈   Even  )  →  ( 𝐴  +  𝐵 )  ∈   Odd  ) |