Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝐴 ∈ Odd → 𝐴 ∈ ℤ ) |
2 |
|
evenz |
⊢ ( 𝐵 ∈ Even → 𝐵 ∈ ℤ ) |
3 |
|
zaddcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
5 |
|
eqeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 = ( ( 2 · 𝑖 ) + 1 ) ↔ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( ( 2 · 𝑖 ) + 1 ) ↔ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
7 |
|
dfodd6 |
⊢ Odd = { 𝑎 ∈ ℤ ∣ ∃ 𝑖 ∈ ℤ 𝑎 = ( ( 2 · 𝑖 ) + 1 ) } |
8 |
6 7
|
elrab2 |
⊢ ( 𝐴 ∈ Odd ↔ ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = ( 2 · 𝑗 ) ↔ 𝐵 = ( 2 · 𝑗 ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑗 ∈ ℤ 𝑏 = ( 2 · 𝑗 ) ↔ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) ) |
11 |
|
dfeven4 |
⊢ Even = { 𝑏 ∈ ℤ ∣ ∃ 𝑗 ∈ ℤ 𝑏 = ( 2 · 𝑗 ) } |
12 |
10 11
|
elrab2 |
⊢ ( 𝐵 ∈ Even ↔ ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) ) |
13 |
|
zaddcl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
14 |
13
|
ex |
⊢ ( 𝑖 ∈ ℤ → ( 𝑗 ∈ ℤ → ( 𝑖 + 𝑗 ) ∈ ℤ ) ) |
15 |
14
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( 𝑗 ∈ ℤ → ( 𝑖 + 𝑗 ) ∈ ℤ ) ) |
16 |
15
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
17 |
16
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
18 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑖 + 𝑗 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑖 + 𝑗 ) → ( ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) ∧ 𝑛 = ( 𝑖 + 𝑗 ) ) → ( ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
22 |
|
oveq12 |
⊢ ( ( 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) |
23 |
22
|
ex |
⊢ ( 𝐴 = ( ( 2 · 𝑖 ) + 1 ) → ( 𝐵 = ( 2 · 𝑗 ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) ) |
24 |
23
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( 𝐵 = ( 2 · 𝑗 ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) ) |
26 |
|
2cnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 2 ∈ ℂ ) |
27 |
|
zcn |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) |
28 |
27
|
adantl |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
29 |
26 28
|
mulcld |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 2 · 𝑖 ) ∈ ℂ ) |
30 |
29
|
ancoms |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑖 ) ∈ ℂ ) |
31 |
|
1cnd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 1 ∈ ℂ ) |
32 |
|
2cnd |
⊢ ( 𝑖 ∈ ℤ → 2 ∈ ℂ ) |
33 |
|
zcn |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℂ ) |
34 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 2 · 𝑗 ) ∈ ℂ ) |
35 |
32 33 34
|
syl2an |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑗 ) ∈ ℂ ) |
36 |
30 31 35
|
add32d |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) + 1 ) ) |
37 |
|
2cnd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 2 ∈ ℂ ) |
38 |
27
|
adantr |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
39 |
33
|
adantl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑗 ∈ ℂ ) |
40 |
37 38 39
|
adddid |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · ( 𝑖 + 𝑗 ) ) = ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) ) |
41 |
40
|
eqcomd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) = ( 2 · ( 𝑖 + 𝑗 ) ) ) |
42 |
41
|
oveq1d |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + ( 2 · 𝑗 ) ) + 1 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
43 |
36 42
|
eqtrd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
44 |
43
|
ex |
⊢ ( 𝑖 ∈ ℤ → ( 𝑗 ∈ ℤ → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
45 |
44
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( 𝑗 ∈ ℤ → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) ) |
46 |
45
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
47 |
46
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( ( ( 2 · 𝑖 ) + 1 ) + ( 2 · 𝑗 ) ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
48 |
25 47
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ( 𝐴 + 𝐵 ) = ( ( 2 · ( 𝑖 + 𝑗 ) ) + 1 ) ) |
49 |
17 21 48
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑗 ∈ ℤ ) ∧ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
50 |
49
|
rexlimdva2 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
51 |
50
|
expimpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
52 |
51
|
r19.29an |
⊢ ( ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( ( 𝐵 ∈ ℤ ∧ ∃ 𝑗 ∈ ℤ 𝐵 = ( 2 · 𝑗 ) ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
53 |
12 52
|
syl5bi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 2 · 𝑖 ) + 1 ) ) → ( 𝐵 ∈ Even → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
54 |
8 53
|
sylbi |
⊢ ( 𝐴 ∈ Odd → ( 𝐵 ∈ Even → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
55 |
54
|
imp |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
56 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝐴 + 𝐵 ) → ( 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
57 |
56
|
rexbidv |
⊢ ( 𝑧 = ( 𝐴 + 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
58 |
|
dfodd6 |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ∃ 𝑛 ∈ ℤ 𝑧 = ( ( 2 · 𝑛 ) + 1 ) } |
59 |
57 58
|
elrab2 |
⊢ ( ( 𝐴 + 𝐵 ) ∈ Odd ↔ ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 + 𝐵 ) = ( ( 2 · 𝑛 ) + 1 ) ) ) |
60 |
4 55 59
|
sylanbrc |
⊢ ( ( 𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → ( 𝐴 + 𝐵 ) ∈ Odd ) |