Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | opeoALTV | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz | |
|
2 | evenz | |
|
3 | zaddcl | |
|
4 | 1 2 3 | syl2an | |
5 | eqeq1 | |
|
6 | 5 | rexbidv | |
7 | dfodd6 | |
|
8 | 6 7 | elrab2 | |
9 | eqeq1 | |
|
10 | 9 | rexbidv | |
11 | dfeven4 | |
|
12 | 10 11 | elrab2 | |
13 | zaddcl | |
|
14 | 13 | ex | |
15 | 14 | ad3antlr | |
16 | 15 | imp | |
17 | 16 | adantr | |
18 | oveq2 | |
|
19 | 18 | oveq1d | |
20 | 19 | eqeq2d | |
21 | 20 | adantl | |
22 | oveq12 | |
|
23 | 22 | ex | |
24 | 23 | ad3antlr | |
25 | 24 | imp | |
26 | 2cnd | |
|
27 | zcn | |
|
28 | 27 | adantl | |
29 | 26 28 | mulcld | |
30 | 29 | ancoms | |
31 | 1cnd | |
|
32 | 2cnd | |
|
33 | zcn | |
|
34 | mulcl | |
|
35 | 32 33 34 | syl2an | |
36 | 30 31 35 | add32d | |
37 | 2cnd | |
|
38 | 27 | adantr | |
39 | 33 | adantl | |
40 | 37 38 39 | adddid | |
41 | 40 | eqcomd | |
42 | 41 | oveq1d | |
43 | 36 42 | eqtrd | |
44 | 43 | ex | |
45 | 44 | ad3antlr | |
46 | 45 | imp | |
47 | 46 | adantr | |
48 | 25 47 | eqtrd | |
49 | 17 21 48 | rspcedvd | |
50 | 49 | rexlimdva2 | |
51 | 50 | expimpd | |
52 | 51 | r19.29an | |
53 | 12 52 | biimtrid | |
54 | 8 53 | sylbi | |
55 | 54 | imp | |
56 | eqeq1 | |
|
57 | 56 | rexbidv | |
58 | dfodd6 | |
|
59 | 57 58 | elrab2 | |
60 | 4 55 59 | sylanbrc | |