Metamath Proof Explorer


Theorem opeoALTV

Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion opeoALTV AOddBEvenA+BOdd

Proof

Step Hyp Ref Expression
1 oddz AOddA
2 evenz BEvenB
3 zaddcl ABA+B
4 1 2 3 syl2an AOddBEvenA+B
5 eqeq1 a=Aa=2i+1A=2i+1
6 5 rexbidv a=Aia=2i+1iA=2i+1
7 dfodd6 Odd=a|ia=2i+1
8 6 7 elrab2 AOddAiA=2i+1
9 eqeq1 b=Bb=2jB=2j
10 9 rexbidv b=Bjb=2jjB=2j
11 dfeven4 Even=b|jb=2j
12 10 11 elrab2 BEvenBjB=2j
13 zaddcl iji+j
14 13 ex iji+j
15 14 ad3antlr AiA=2i+1Bji+j
16 15 imp AiA=2i+1Bji+j
17 16 adantr AiA=2i+1BjB=2ji+j
18 oveq2 n=i+j2n=2i+j
19 18 oveq1d n=i+j2n+1=2i+j+1
20 19 eqeq2d n=i+jA+B=2n+1A+B=2i+j+1
21 20 adantl AiA=2i+1BjB=2jn=i+jA+B=2n+1A+B=2i+j+1
22 oveq12 A=2i+1B=2jA+B=2i+1+2j
23 22 ex A=2i+1B=2jA+B=2i+1+2j
24 23 ad3antlr AiA=2i+1BjB=2jA+B=2i+1+2j
25 24 imp AiA=2i+1BjB=2jA+B=2i+1+2j
26 2cnd ji2
27 zcn ii
28 27 adantl jii
29 26 28 mulcld ji2i
30 29 ancoms ij2i
31 1cnd ij1
32 2cnd i2
33 zcn jj
34 mulcl 2j2j
35 32 33 34 syl2an ij2j
36 30 31 35 add32d ij2i+1+2j=2i+2j+1
37 2cnd ij2
38 27 adantr iji
39 33 adantl ijj
40 37 38 39 adddid ij2i+j=2i+2j
41 40 eqcomd ij2i+2j=2i+j
42 41 oveq1d ij2i+2j+1=2i+j+1
43 36 42 eqtrd ij2i+1+2j=2i+j+1
44 43 ex ij2i+1+2j=2i+j+1
45 44 ad3antlr AiA=2i+1Bj2i+1+2j=2i+j+1
46 45 imp AiA=2i+1Bj2i+1+2j=2i+j+1
47 46 adantr AiA=2i+1BjB=2j2i+1+2j=2i+j+1
48 25 47 eqtrd AiA=2i+1BjB=2jA+B=2i+j+1
49 17 21 48 rspcedvd AiA=2i+1BjB=2jnA+B=2n+1
50 49 rexlimdva2 AiA=2i+1BjB=2jnA+B=2n+1
51 50 expimpd AiA=2i+1BjB=2jnA+B=2n+1
52 51 r19.29an AiA=2i+1BjB=2jnA+B=2n+1
53 12 52 biimtrid AiA=2i+1BEvennA+B=2n+1
54 8 53 sylbi AOddBEvennA+B=2n+1
55 54 imp AOddBEvennA+B=2n+1
56 eqeq1 z=A+Bz=2n+1A+B=2n+1
57 56 rexbidv z=A+Bnz=2n+1nA+B=2n+1
58 dfodd6 Odd=z|nz=2n+1
59 57 58 elrab2 A+BOddA+BnA+B=2n+1
60 4 55 59 sylanbrc AOddBEvenA+BOdd