Metamath Proof Explorer


Theorem omoeALTV

Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omoeALTV AOddBOddABEven

Proof

Step Hyp Ref Expression
1 oddz AOddA
2 1 zcnd AOddA
3 oddz BOddB
4 3 zcnd BOddB
5 negsub ABA+B=AB
6 2 4 5 syl2an AOddBOddA+B=AB
7 onego BOddBOdd
8 opoeALTV AOddBOddA+BEven
9 7 8 sylan2 AOddBOddA+BEven
10 6 9 eqeltrrd AOddBOddABEven